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ABSTRACT 

This final technical report describes the efforts during the interval from July 2012 through the end 
of December 2013 to accomplish the project objective of studying the feasibility of developing a 
compressive sensing theory based approach to form a grayscale image in the underwater environment. 

This objective was accomplished through a series of theoretical work, simulations and 
experimental studies. In the first stage of this project, the frame based Compressive Sensing 
underwater imaging system concept was further studied. This study resulted in a publication that was 
among the top most downloaded papers on the Journal of Electronic Imaging website until November 
2013. One of the most important achievements of the project is that the Compressive Line Sensing 
underwater imaging system was conceptualized. Built upon the theoretical foundation the Compressive 
Sensing theory and the Distributed Compressive Sensing theory, this technique employs the paradigm 
of independently sensing each line and jointly reconstructing a group of line. Such implementation is 
compatible with the traditional whiskbroom type survey, but achieves significant resource 
compression by exploiting the correlation/redundancy among adjacent target regions. An image 
reconstruction framework was developed based on this concept. Extensive simulations were conducted 
to validate this framework. A prototype system was developed to further validate the Compressive 
Line Sensing framework through the experimental study. A journal paper describing this effort will be 
published in Journal of Optical Engineering special section on ocean optics. 
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1. OBJECTIVES 

The main objective of the project is to study the feasibility of applying the compressive sensing 
theory to develop an alternative approach to form a grayscale image in the underwater environment. 

This project supports an overarching research goal of developing an extended range underwater 
electro-optical imaging system that is compact, cos: effective, energy efficient and highly adaptive to 
the environment and tasks. Such system can be advantageous when conducting electro-optical 
identification (EOID) using high speed Autonomous Underwater Vehicle (AUV) in a constant varying 
environment such as the turbid coastal zone. 

2. APPROACH 

To achieve the project objective, the Pis engaged in a number of activities over the course of 
eighteen months. The sensing process of a compressive sensing imaging system in a scattering 
environment was studied. 

Based on the understanding of this sensing process, we first developed the system architecture of a 
frame based compressive sensing underwater imaging system. This system concept assuems a 
stationary sensing platform and utilizes COTS solid state Spatial Light Modulation (SLM) device [8] 
that can switch among many patterns at very fast ra:e. A series of simulations and experimental work 
were conducted to study this system concept. 

The novel Compressive Line Sensing system concept was developed next. This technique retained 
the basic design of the aforementioned frame based system. One significant difference is that the 
system removes the requirement of a stationary platform and is more compatible the whiskbroom 
imaging formation mode employed in most traditional electro-optical survey operations. Adopting the 
paradigm of "independently sensing each line and jointly reconstruct a group of lines" enabled by the 
Distributed Compressive Sensing theory, the system maintains good image quality at high compression 
ratio. The feasibility of the proposed Compressive Line Sensing system concept was validated through 
a series of simulations and the initial experimental study using a prototype constructed with a Texas 
Instruments Digital Micromirror Devices development system. 

In addition, through these studies, the deficiencies and/or areas of lack understanding can be 
identified and addressed in future work. 



3.   WORKS COMPLETED 

3.1. Foundation of the compressive sensing underwater imaging system 

As the first step in the investigation, the theoretical foundation of the proposed imaging system 
concept was established. 

Compressive Sensing and Distributed Compressive Sensing 

One of the two theories that support the proposed concepts is the Compressive Sensing (CS) 
theory that defines a framework for the simultaneous sampling and compression of sparse signals 
using incomplete linear measurements [1, 3-6]. While CS theory mostly addresses the intra-signal 
sparsity, the Distributed Compressive Sensing (DCS), closely related to the distributed source coding 
theorem [15, 18], attempts to additionally exploit the inter-signal redundancy among distributed and 
correlated sources through the establishment of the proper joint sparsity models (JSMs). Among the 
three different joint sparsity models proposed in Baron et al. [2], JSM-1 is of primary interest in this 
study. In the JSM-1 framework, each signal Xi within the group is the sum of a common component 
Zc and a component that is unique to each signal Zj: Xl—Zc + Z,, I = 0,1... L, where L is the number 
of signals to be solved jointly via LI minimization. Among the several LI minimization software 
packages evaluated, Ll_homotopy [19] was selected for this project. One of the attractive features of 
Z-l_homotopy is that it supports the reweighted L] minimization [5]. 

Impact of the underwater environment on the sensing process 

Compared to over-the-air scenarios, the main challenge for the underwater CS imagers is the 
pronounced beam spreading and attenuation due to the propagation of light through the scattering and 
absorbing ocean water, (we ignore the effects of solar irradiance/ambient light in the current study). 
When a binary pattern of highly collimated light is emitted from the transmitter, the light will diffuse 
and attenuate as it propagates to the target plane. The degree of spreading/attenuation is determined by 
the laser beam divergence, target range, and the inherent optical properties of the water. The target 
scene reflection is given by the product of the incident light pattern and the surface reflectivity 
pattern X of the scene. The reflected light will then undergo additional spreading and attenuation as it 
propagates to the PMT receiver. The photon flux corresponding to the target scene reflection that 
enters the receiver is a function of the PMT location and orientation, its sensitivity pattern, and the 
inherent optical properties. The (non-target information bearing) photon flux due to volume 
backscatter in the water will also contribute to the measured signal. 

Assuming a wide receiver aperture and Lambertian reflection at the scene, the total photon flux 
corresponding to the m'h measurement ym can be represented by the equation (* denotes convolution 
and o represents the Hadamard point-by-point product): 

ym = PsyS I ^2 ^mft./)0 ^J)] + AJ (i) 

where PSyS is a constant accounting for certain system specifications (receiver aperture, power etc.); am 
is an attenuation coefficient related to radiative transfer from the scene back to the sensor; A^>m is the 
number of 'on' pixels in the illumination pattern m; Q>m = Am * BSFIT is the measurement pattern on 
the target plane (i.e., the original binary pattern after propagating from the illuminator to the target 
plane through a scattering and absorbing medium described by the beam spread function BSFJT); 

07n o X is the (information bearing) "imprinted" pattern due to the modulation of the measurement 
pattern by the target scene reflectance pattern; ym is the corresponding total reflected photon flux. 
Making the reasonable assumption that the volume backscatter contribution from every beam (/?) in 



the illumination pattern is the same; the total volume backscatter component of the measurement is 
proportional to the number of "on" pixels in the pattern A^. 

Three key observations can be drawn from Equation (1): 
I)   The  measurement  matrix{<I>nJ  corresponding  to   a  dense  binary   illumination  patterns 

Am represents a loss of detail due to the low-pass filtering effect of the BSF!T (Figure 1). 

(a) Original Am (b) <Pm at 5 Atln. Lengths 

Figure 1. Binary illumination pattern and measurement matrix in turbid water. 

II) The modulation occurs between the target scene reflectance patterns and Om instead of Am. 
III) The impact due to the propagation from tie target to the receiver on the total photon flux is 

essentially diffuse attenuation that can be represented by an attenuation factor aTR, which 
remains unchanged for all the patterns in the sensing process. 

Measurement matrix design and image reconstruction for compressive sensing underwater imager 

The underwater compressive sensing system design incorporates three components to address the 
aforementioned issues: 

Model assisted reconstruction: the Electro-Optical Detection Simulator (EODES) radiative transfer 
models [9] have been extended to predict the on-target sensing patterns {^m) = (An) * ^SFlT, which 
are used in the image reconstruction process; 

Multi-scaled binary pattern: To mitigate the forward scattering and backscattering, multi-scale binary 
dither patterns (Figure 2) are adopted. Each pattern is divided into Nb x Nb level one blocks (Figure 
2(a)). Only one "on" pixel is present within each block, and its in-block location follows an uniform 
distribution (Figure 2(b)). The on/off polarity of a block is determined by an independent Bernoulli 
random variable. 

(a) Top Level (b) One block (c) Overall Matrix 

Figure 2. Multi-scale measurement matrix. 

Bipolar matrices and measurements via polarity flipping: During image reconstruction, the positive- 
valued (EODES model predicted) measurement matrices {Om} and the raw measurements {ym} will be 
converted to bipolar matrices {O^} and vectors {y,fj, where B indicates that both positive and negative 
values are possible. In hardware, each dither pattern is loaded twice, first with the DMD mirrors "on" 
(corresponding to a digital "1") only in the blocks originally chosen to be "on", producing the pattern 
O^, and then with mirrors "on" only in the blocks originally selected to be "off, producing (D^ 
(Figure 4). The relations 

B  _     + _     - ^ 



where y^ and y^ are the measurements corresponding to O^ and O^, represent the sensing process 
when polarity flipping is employed. 

The Z,7-minimization problem becomes: 

cD>a||2 = \\y3 - (AB * BSF1T) ^a\\2 < 8 
(3) 

a  = argmm ||a| 

subject to ||yB 

where yB = {yfj, AB={Afn} and O
B
={(D^}. 

One difference between Equation (3) and the LI minimization cost function for the normal CS 
problems is the incorporation of the convolution in the constraint term in Equation (3) to more 
accurately reflect the sensing process in the scattering medium. In essence, Equation (3) can be 
regarded as simultaneous compressive sensing and deconvolution. 

With this foundation, two underwater compressive sensing concepts have been developed. We 
will first discuss the concept of a frame based system that assumes the illuminator and receiver are 
located on stationary platforms during the sensing process. 

3.2 Frame-based compressive sensing imaging system design 

The proposed frame-based CS underwater laser imager is an active serial imaging system. The 
overall system processing flow is illustrated belcw in Figure 3(b). During the sensing process, a 
sequence of pre-generated binary illumination patterns {i4m} is loaded onto a Spatial Light Modulation 
(SLM) device, such as the Digital Micromirror Device (DMD), to spatially modulate the laser source 
that illuminates the target plane. The same binary patterns are also submitted to a radiative transfer 
model such as EODES to predict the measurement matrix {0?n} at the target plane. At the receiver, a 
"bucket" photon collector such as the PMT records the total optical return signal. The difference 
between polarity-flipped pairs of measurement matrices constitutes {O } is one input to the 

reconstruction process. The difference between their corresponding PMT measurements [yfy is the 
other input to the reconstruction process. 
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(a) Illustration of the sensing process (b) System flow chart 
Figure 3. Frame based compressive sensing underwater laser imager 

3.3 Simulation Environment 

The core of the simulation environment was the EODES radiative transfer model. Both the 
image simulation tool EODES-I (for fast simulation speeds) and the temporal simulation tool 
EODES-T (providing more accurate results) were utilized to construct the CS simulation environment 
(Figure 4). 
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Figure 4. Simulation flow. 

Different beam attenuation (c) and/or scattering {b) coefficients can be specified for the 
simulation path (red arrows) and the model-prediction path (blue arrows) when predicting the 
measurement matrices using the EODES-I model. The same system and environmental parameters are 
used as input to the EODES-T temporal model to derive a more accurate backscatter and signal levels. 
A Metron-developed PMT Noise Model was adopted to model the receiver noise performance [10, 14]. 
The simulation environment undergoes iterative enhancements to improve the fidelity of the simulation 
results. 

3.4 Compressive Line Sensing imaging system design 

Sensing process in a compressive line sensing underwater imaging system 

For conventional underwater survey, the platforms are generally moving at uniform speed in a 
"lawn mow" pattern and the images are acquired line by line in a whiskbroom fashion. Therefore, it is 
desirable to extend the aforementioned frame-based design to a line-based system. In this regard, we 
rewrite Equation (3): 

faUN \ 
ym(L + AL,,) = Psys   ^. 2^ ^[(B^a;] * AmCiJ)) °*(U + ALm -;)] + $m (4) 

\   I'mj=-Ui = l I 
where L is the current line under investigation; U is the effective vertical aperture due to the spreading 
in the vertical (along track) direction (i.e., the full width at half maximum of the vertical aperture); N is 
the number of pixels within each line; ALm = mvAt is the platform displacement when the 
measurement pattern m is projected (relative to the previous pattern); At is the refresh time of the SLM 
device and   v is the platform speed. The platform motion provides the second axis in the image 

Pixel/line (Nl 
formation (i.e.  sensing next line).  In this regard, the compression ratio:  is 

' Measurements/line (M) 
proportional to the platform speed; that is, the measurement rate (i.e., the number of measurements that 
can be taken within the line sensing time) is inversely proportional to the platform speed. 

It can be observed by comparing Equation (4) v/ith Equation (1) that the essential sensing process 
remains similar; therefore, the general principles devsloped for the frame-based system design are still 
valid for line-based sensing. Namely, the model-assisted reconstruction and the multi-scale, polarity 
flipping based bipolar measurement matrix design carry over to the line-based sensing paradigm. 
Nevertheless, in addition to the fact that the illumination patterns will be ID instead of 2D, there are 
some new challenges in a line-based implementation. The reconstruction of each line can be treated as 
an independent CS problem. However, since in most natural scenes the adjacent lines are highly 
correlated, techniques that also exploit the joint sparsity such as DCS offer the potential to take 
advantage of this correlation to achieve improved image quality at the same measurement rate. In 
particular, the DCS JSM-1, which exploits the sparsity of a group of sources (i.e., lines) by modeling 



them as consisting of a common component and unique components for each line, is deemed suitable 
for the current application. 

To better understand how to map the current problem into the joint sparsity framework, we will 
develop the measurement model with certain simplifications. First, we concentrate on the scenario 
where the refresh rate of the SLM device is sufficiently fast relative to the platform motion. In this 
case, the displacement ALm is sufficiently small during the time to acquire the measurements needed to 
recover a single line: 

ymOO « Psys ( ^ Z YJ^
BSF'T(l'J) * ^'W 0X(i' L "^1 + &> (5) 

j=-ui=i 

We assume that the platform speed is constant; therefore, the same number of measurements will 
be taken for each line. We will further make a reasonable approximation that the beam spread function 
has a separable kernel that can be decomposed into: BSF1T « BHBV, where Bv and BH describe the 
vertical and horizontal beam spreading respectively. Taking into consideration that Am is now a one- 
dimensional (ID) pattern. Equation (5) can be simplified to: 

V       N 

Ni, j=-U i=i 

' sys 

' U , N v (6) 

where ^(1) = BH * Am(L) is the sensing pattern after undergoing horizontal spreading and the index 
in A{L) and 4>(L) indicates they are the patterns for line L. Equation (6) essentially represents a 
convolution of the measurements of each cross-track line with the vertical (along-track) beam 
spreading Bv. Figure 4 is a graphical description of the measurement model based on Equation (6). It 
illustrates a new challenge in the compressive line sensing: because of vertical spreading, the 
measurement matrix is not of the diagonal block matrix form that most joint soarsity models assume. 
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Figure 4. Compressive line sensing measurement model 

With the further approximation of ignoring the vertical spreading, the non-diagonal blocks are set 
to zero and the measurement matrix for DSC JSM-1 will take the form: 

p 
<DHB(1)    ■ 0        <DHB(1) " 

^ = : 

0 •    0HB(L)    0HB(L) 



where the superscript B indicates the application of Equation (2) to obtain the bipolar signal. The 
corresponding cost function is: 

a* = argmin HaJi + HaJi + • ■ + Hajj 

subject to   yB -O ^a = l|ys (AB*BH)x¥a\\   <8 (7) 

Evidently ignoring vertical spreading to comply with the joint sparsity model introduces 
additional interferences/errors, especially in high-turbidity cases. However, an interesting aspect of the 
compressive line sensing imager is that, with the continuous forward progress of the platform, each 
line can be included in as many as 2U + 1 different groups while it is inside the effective vertical 
aperture. Line groups with higher joint sparsity (i.e., lines within the group are more correlated) should 
result in a better solution. Therefore, it is beneficial to solve each line multiple times while it is inside 
the aperture, and select the best among all the runs as the final solution for that line. Buffering of the 
multiple solutions of the same line, therefore, provides an alternative way to exploit the line-to-line 
correlations. Various filters (i.e., median filtering, averaging etc.) can be applied to accomplish the 
"selection". 

Compressive line sensing imaging system processing flow 

Based on the above analysis, the compressive line sensing imager design may be summarized. The 
system is consistent with those used for traditional survey operations (Figure 6b). The three 
components developed for the frame-based system (the model-predicted reconstruction; multi-scaled 
measurement matrices, and polarity flipping to construct bipolar measurements/matrices) are retained 
with the difference that the ID patterns are generated by the SLM device. The illuminator of the 
compressive line sensing system shares some similarity with that of the Streak Tube Imaging Lidar 
(STIL) (McLean [12]) which deploys a ID fan beam (wide cross-track, narrow along-track beam 
divergences) illumination. However, a significant difference is that instead of pulsing with uniform 
light as in STIL, the illumination scheme for a CS-based system consists of a line "patterns" generated 
via SLM, which are used to "encode" the current line (Figure 6a). 
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(c) Processing flow chart 

Figure 6 Illustration of the system operation and the processing flow chart of the Compressive Line Sensing Imager 



The process flow is shown in Figure 6c. There are essentially three sections in the processing: 
initialization, sensing and reconstruction. During the initialization, the number of measurements per 
line is first computed from the given expected platform speed and the SLM refresh rate. The line group 
count (gnum), which is the number of lines to be solved jointly, is determined according to the system 
specifications and environmental conditions, such as the water turbidity, target distance, laser 
divergence, etc. Adjusting this parameter during the operation, after some initial image quality 
evaluation, is a trivial process. 

After the sensing of one line is accomplished, a first-in-first-out buffer that consists of gnum sets 
of measurements and measurement matrices will be updated with the new data. Subsequently, the 
group of lines in the buffer will be used to solve the Ll_homotopy problem. The resulting solutions for 
each line are also buffered. When a line moves ou: of the effective vertical aperture, filtering such as 
median filter can be applied to obtain the final solution: 

X(,L) = medtan[Xu(L)], for w = 1... 2U + 1 (8) 

where XU(L) is the uth solution for line L. 

3.5 Compressive Line Sensing imaging system prototype 

A prototype system has been developed for the initial experimental validation of the Compressive 
Line Sensing concept. The core of the illumination sub-system is the DLP Lightcrafter evaluation 
module, consisting of a 608 x 684 diamond pixel 0.3" WVGA DMD (Figure 7b). Also can be observed 
in Figure 7b, the system is very compact with a dimension of 117mm x 65mm x 23mm. 

The overall prototype system is shown in Figure 7a. The configuration of the receiver was very 
straightforward - consisting of a Hamamatsu R9880U-210 PMT with 12 degree FOV. The output of 
the PMT was connected to a National Instruments PCI-6133 analog data acquisition board capable of 
A/D with 14 bit precision. 
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(a) Overall prototype system (b) DLP Lightcrafter system 

Figure 7. CLS prototyping system 

The illuminator design, on the other hand, required significant effort. The illuminator needed to 
generate 1-D random patterns. Since the DMD is a 2-D SLM device, to achieve this objective, 2-D line 
patterns were fed into the Lightcrafter and focusing optics was designed to convert 2-D line patterns 
into 1-D (dot) patterns. One of the complicating factor was that due to the small pitches of the DMD 
mirrors (<10^m), when illuminated with highly coherent laser, strong diffraction patterns would 
present (Figure 8a). 



fa) DMD diffraction patterns from 
coherent laser illumination 
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(h) Illuminator optical design to mitigate the DMD diffraction 

Figure 8. DMD diffraction and its mitigation 

While it was possible to re-combine the different order diffraction patterns using more 
sophisticated optics (as in most DLP projection system), to simply the design, a mechanical pinhole 
and a baffler were used to filter out all non-zero-order patterns. While the design was not very efficient 
(the power of the laser source was set to Iw; the maximum system output power was measured to be 
90mw), it served the purpose of the initial validation prototype system. The resulting optics design is 
shown in Figure 8b. The original LED light engine of the Lightcrafter was removed to expose the 
DMD to external laser illumination. Beam expanding optics and reflecting mirror were used to focus 
laser beam from a Cobolt Samba CW laser onto the DMD surface. Along the "on" reflection path of 
the DMD, a series of optics (Bi-convex spherical lens, mechanical slit, bi-concave spherical lens and 
cylindrical lens) were used to filter out non-zero order diffraction patterns and convert the 2-D line 
patterns into 1-D dot patterns. 

The original 2-D line pattern and the corresponding 1-D on-target pattern generated using the 
aforementioned illuminator design is shown in Figure 9 (ambient lighting was turned on when 
acquiring the on-target pattern for better rendition). 

(a) 2-D line pattern fed into Lightcrafter (b) Corresponding 1-D dot pattern 

Figure 9. Original 2-D line pattern and on-target 1-D pattern 

4.   RESULTS 

4.1. Simulation and experimental results of the frame-based system 

Simulations were conducted for three different technologies: CS, Pulsed LLS (PLLS), 
Continuous Wave (CW) LLS. A near-monostatic configuration was adopted for all simulations. The 
laser and PMT separation was set to 0.4 m. The target panel was 1.2m2 and located 7 m away from the 
illuminator-receiver assembly. The resolution of the image and the sensing patterns was 64x64 pixels. 
Average laser power was 4 W, and the DMD refresh rate was A kHz. For CS simulation, 1024 
measurements were used (due to polarity flipping 2048 raw measurements were acquired), resulting in 
a compression ratio of 0.5. Since the illumination was frame based, the input power for each pixel 
element was set to Ppixei = Ptotai/iN2?), where N2 is the pixel count, to match the power levels in 
the PLLS and CW LLS simulations. In the PLLS simulations, a 3 ra laser pulse with 4 kHz repetition 

10 



rate (T) was used and perfect range gating (i.e., no backscatter reached the PMT) was assumed. The 
receiver apertures were set to 15 mrad for the PLLS and CW LLS simulations, 90 mrad for the CS 
simulations. In the CS simulations, the pattern top level block size (i.e. minimum distance between 
two ON pixels) was set to four pixels. A noise factor ./VF = 1.2 was assumed throughout the 
simulations. To evaluate the simulation image quality, a well-known image quality metric, the 
structural similarity index metric (SSIM) [17], was adopted. 

Simulation Results 

Figures 10 and 11 demonstrate CS imager performance against various test images at different 
turbidities. These images consisted of both test patterns (Star Chart and Geometry patterns) and images 
taken in underwater environments (coral, fish, and diver). In Figure 11, the structural SSIM at various 
turbidities is presented. 

Figure! 0. Reconstruction images at different turbidities. 
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Figure! 1. Reconstruction Performance at different turbidities (SSIM metrics). 

As seen from Figure 11, the quality degraded with increasing turbidity for all of the test images. 
One interesting observation was that the SSIMs for the Star Chart and Coral 2 were lower than those 
for the other images at the corresponding turbidities. This was mainly because the content was sparser 
in the other patterns, which resulted in better performance of the TV minimization based optimization. 
At the range of 7 AL all test images suffered significant loss of detail, which was due to the noise 
interfering with the reconstruction. 

Figure 12 illustrates the image quality change with different numbers of measurements (i.e., 
different compression ratios). It is interesting to note that there was more obvious image quality 
degradation with reduced measurements in clearer waters than at higher turbidities. 

Measurements 

Clear 
water 

3AL 

SAI. 

7AI. 

(a) Reconstructed images 

fra       200       300       400       500       600       703       600       90O      1000     I10O 
Njtrbcr oi PttcasutwrerHs 

(b) Corresponding SSIM curves 

Figure! 2. Reconstruction performance with different number of measurements. 
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(a) Simulated images at different turbidities using the three different techniques 
i 

irctot      geomer/        ayali fish cwaS rfwef starchart      ficomelry        coiaii 6sh co^2 dr/ef 

ffi; SSIM Curves with turbidity at 3 AL      (c) SSIM curves with turbidity at 7AL 

Figurel3. Reconstruction performance at different turbidities. 

The CS results were compared with the images from PLLS and CW LLS simulations in Figure 
13. For the SSIM curves, the names of the test images are listed on the x-axis. It can be seen that the 
image quality of the CS imager was comparable to that of PLLS and LLS at lower turbidity (3 AL). At 
a higher turbidity (7 AL) the PLLS images preserved the image detail the best; CS images suffered 
more resolution loss than PLLS, especially for images with more high-resolution content; and, the 
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CW LLS images were overwhelmed by noise. One reason for the relatively poor performance of the 
CS imager at high turbidity was that the current image reconstruction model assumed an additive 
Gaussian noise corruption, which deviated from the true noise characteristics of the PMT receiver. It is 
conceivable that a reconstruction model that better reflects the PMT noise could significantly improve 
CS imager performance, especially at higher turbidities. 

Underwater Experimental Results 

An underwater experiment was conducted in the HBOI optical test tank to validate the 
proposed frame-based compressive sensing serial imaging design. The target plane consisted of 
multiple technical targets (Geometry and Star Chart) and coral samples (Figure 14a). A LabView 
based data acquisition system was developed for this effort. A series of pre-generated illumination 
pattern images were loaded onto a DELL 4310WX DLP data projector with a 1280x800 native 
resolution to project the patterns onto the target plane with a 60 Hz refresh rate. A Hamamatsu R7600U 
PMT was connected to a National Instrument data acquisition board to sample the PMT output 
(Figure 14b and c).         

Side View 

Target Plane       20cm 

Active Area 

Water Body 

Top View 

Target Plane r 
iji 

Projector • 
11 -. ■ 

rL 11 View Port 
m .9 . 

Projector- 30cm 
L.I  PMT 

(a) Target plane (b) System setup (c) Experimental environment 
Figure 14. System setup geometry. 

During the experiment, to achieve the necessary contrast for pattern projection, the projector 
was operated at a 20% brightness level with a light output of about 600 lumens. The dimensions of the 
measurement matrices were 100x100 pixels; the dimensions of the corresponding projected 
illumination patterns were 300x300 pixels, so that each element of the measurement matrix is covered 
with a 3x3 patch. With the distance between the screen and the projector set at 2 m, the on-screen 
active area is about 20x20 cm. Such an area is suitable for both technical targets (with a dimension of 
14x14 cm) and most of the coral targets. 

As shown in Figure 14c, there is a 30 cm separation between the projector and the PMT. Since 
the optical arrangement of the projector is such that the light is projected with an upward tilt 
(optimized for conference room use), the elevation of the PMT is 40 cm higher than the projector so 
that the center of the illuminated area is aligned with the FOV of the PMT. A bandpass filter with 5 nm 
full width at half maximum (FWHM) centered at 532 nm was placed in front of the PMT to retain only 
the green portion of the spectrum. The PMT had a wide FOV of 13 degrees. The experiment was 
conducted at four different turbidities: clear water, c = 0.31, 1, and 2. 
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(b) Reflection of the projected pattern from the corals. 

Nonnal patterns 
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Image               -iM; Q 
(a) Reconstructed image at different turbidities 

(c) Dynamical pattern adjustment for contrast 
improvement. 

Figure 15. (a) Reconstructed image at different turbidities (b) Reflection of the projected pattern from the corals and (c) Dynamical 
pattern adjustment for contrast improvement. 

Figure 15a illustrates the reconstruc:ed images at different turbidities. All images are at a 
resolution of 100x100 pixels, and 2500 measurements were used in the reconstruction to give an 
effective compression ratio of 4:1. It can be observed that for the technical targets, the quality of the 
reconstructed images initially improves with increasing turbidity, though this trend breaks down at the 
highest turbidity of 4 AL (due to the power limitation of the illuminator) . The main reason for the 
initial improvement was that the specular reflections from the surfaces of these two targets were 
reduced with increased turbidity. On the other hand, the coral results maintained fairly consistent 
quality at different turbidities, though this trend also broke down at 4 AL. While the center portion of 
the corals is clearly identifiable in the color image, the coral reflectivity at 532 nm (green light) is 
extremely low, as can be observed in Figure ! 5b, which results in a low-contrast image reconstruction 
of this region. 

In general, the current implementation of the proposed approach seems to favor higher contrast 
regions of the image (as can be seen with the Geometry target in clear water as well). Additional work 
will be required to address this issue. One advantage of the CS approach is that the image 
reconstruction can begin when a minimum number of measurements are acquired, and image quality 
can then be progressively improved with addtional measurements. Therefore, one potential approach 
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is to dynamically identify the high-contrast and low-contrast regions from initial reconstructions, and 
adjust the intensity of the projected patterns to accentuate the low-contrast regions. One such attempt 
for the Geometry target is shown in Figure 15c. To compensate for the high-contrast center block, half 
of the patterns were projected with the center square intentionally dimmed by 50%, which helped to 
improve the results in the low-contrast regions. 

4.2. Simulation and experimental results of the Compressive Line Sensing system 

The simulation environment developed for the frame-based CS underwater imager (Figure 4) was 
modified for this simulation. The simulation parameters are listed in Table 1 below. During the 
simulations, certain simplifications (i.e., adopting CW laser instead of pulsed laser, and ignoring the 
noise and motion jitters in the measurements for each line), and approximations (e.g., separable beam 
spread function kernels) were assumed in the current, early stage of development and learning. As 
such, the laser power level and the DMD refresh rate are nominal values in the simulations. This 
allows us to concentrate on investigating the interference introduced by the vertical spreading 
discussed in Section 3.4. We have gained a certain level of understanding of the system noise 
performance from the study of the frame based system in section 4.1. 

Table 1. Simulation Parameters 

Target distance (m) 7m 

Turbidities 0.04 AL (clear water), 2.1 AL, 4.2 AL and 7 AL 

DMD based SLM Contrast: 5000:1, Refresh Rate: 32KHz 

Target reflectance Max: 0.15, Min: 0.05 

Target Dimension (m2) 0.75 

CW laser Divergence: Imrad, Power: 1W 

Image Dimension 512x512 (i.e. 1.5mm pixel resolution) 

Images tested: USAF1951_b test chart; searock, fish and seabed natural images 

CS Sparsifying basis Discrete Wavelet (CDF 9/7) 

CS Pattern ON-pixel spacing 8 

Raw Measurements 32 64 128 256 

Compression Ratio 16:1 8:1 4:1 2:1 

Corresponding platform speed (knots) 4 2 1 0.5 

Receiver Aperture 
CS 75mrad 

LLS 15mrad 

It is interesting to evaluate the effectiveness of the JSM-1 model in exploring the inter-line 
correlation. Figure 16 and 17 compares the reconstructed images and the reconstruction performances 
between the DCS based joint reconstruction (i.e., gnum>\) and independent reconstruction {gnum=\). 
The different measurement ratdgnum pairs used in DCS based joint reconstruction simulations are: 32 
meas/line & gnum=\5; 64 meas/line & gnum=7; 128 meas/line & gnum=4; and 256 meas/line & 
gmim=2. At the lowest measurement rate (32 measurements/line), the reconstructed images and the 
corresponding SSIMs generally confirmed the image quality improvement results from the joint 
reconstruction via DCS paradigm. Even though the SSIMs for the UASF195I_b test chart were nearly 
the same, the jointly reconstructed images were perceptually better than the images reconstructed 
independently at this measurement rate. At higher measurement rates (>64 measurements/line), there 
was enough information to recover each line independently; however, joint recovery improved the 
overall image quality by reducing the line-to-line reconstruction quality variations. This can be 
observed by examining the SSIM curve of the fish test image in clear water (Figure 17e) for the case 
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where each line is recovered independently: the SSIM score with 256 measurements/line was even 
lower than that using 128 measurements/line. 

256 meas/line 

Figure 16. Comparison behveen LLS and CS Images with different measurements rates at different turbidities 
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Figure 17. Performance comparisons between joint reconstruction via DCS JSM-1 and reconstructing each line independently. 
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Figure 18. Recoitstrb ction images at different turbidities. 

Figure 18 demonstrates the compressive line sensing imager performance against various test 
images at different turbidities. All images were reconstructed with 256 measurements/line (2:1 
compression ratio) and gnum=2. The images from LLS simulations are also included. In Figure 19, the 
SS1M at various turbidities is presented. 
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Figure 19. Reconstruction Performance at different turbidities (SSIM metrics). 

It should be stressed, again, that all of the simulations were done without considering the noise 
induced image degradation. Under such assumption, the performance difference between pulsed LLS 
and CW LLS was also negligible. A more rigorous comparison between compressive line sensing 
imager and the LLS system will be conducted in future work. 

Lastly, it is interesting to compare the image reconstruction with patterns with different top level 
block sizes. In the Compressive Line Sensing system, the block size is essentially the horizontal 
distances between two blocks (Figure 20a). Figure 20b shows the reconstructed image of usafI951_b 
in clear water using patterns with four different blocK sizes. 

ON pixel 

(a) Illustration of block sizes in Compressive Line Sensing Patterns 

Block Size = 8 

•z -'111 = 3 
111 = 4 

III 

Block Size =16 Block Size = 32 Block Size = 64 

(b) Reconstructed Images using patterns with different block sizes 

Figure 20. Reconstructed usaf_19Sl b test chart in clear water using patterns with different block sizes 

Since the horizontal dimension of the image is 512 pixels, the maximum number of ON pixels for 
a pattern with block size=8, 16, 32 and 64, the maximum number of ON Pixels will be 128, 64, 32 and 
16 respectively. It is therefore very interesting tha: while there was some image degradation with 
increased block size, good fidelity was maintained even when the block size was increased to 64 - a 
very sparse pattern with maximum 16 ON pixels in each pattern. This feature can be very beneficial for 
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microwave and/or millimeter wave active serial imaging systems, where the Compressive Line 
Sensing is also applicable. In these systems, such sparse beam patterns can significantly reduce the 
complexity and cost of the antenna design. 

Initial experimental results 

CLSJI System 

(a) CAD rendering of the HBOI test tank 

Side View 
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Active Area     / PMT \- 

illuminatpc 

lop view 

Target Plane', 

: 'Water Body l   ''        ; 

Tiew Port 

CLSpi System 

(b) Test target (c) Test environment set up 

Figure 21. HBOI Optical Imaging Test Tank and test configuration 

Initial validation tests of Compressive Line Sensing imager were conducted using the prototype 
system described in section 3.5 in the HBOI optical test tank under clear water (c=0.03 m" ) conditions. 

During the experiment, a 75 cm2 USAF1951 -B target was placed 5 m away from the viewport. 
(Figure 21) The beam spot size was about 1.5 mm with a 512-pixel maximum pixel count. The DLP 
Lightcrafter was operated at a 250 Hz refresh rate (i.e., cycling through 250 patterns per second) 
during the tests due to the limitation of the current version of firmware. The same set of binary patterns 
{i4m} used to illuminate the target was fed into the EODES radiative transfer model with the system 

parameters (i.e., laser divergence, illuminator/receiver separation and target distance, etc.) and 
environmental conditions (c=0.03 m'1) to predict the on-target measurement patterns {Om}. Equation 
(4) was then applied to {^j and the corresponding PMT measurements {ym}to generate the inputs 
needed to solve Equation (9) via the LIhomotopy. 

The prototype system is still a work-in-progress. However, some interesting experimental results 
using the current hardware are still worthy of some discussion. Figure 22a is the reconstructed image 
using 256 measurements per line (2:1 compression) with gnum=2 lines, following the cost function in 
Equation (9). The right side of the image was quite dim indicating substantial light loss. The cause of 
this image quality degradation was traced to the imperfect illuminator design, mainly the non-uniform 
illumination of the DMD surface (Figure 22b). Direct compensation of the bias by dividing each line 
with the distribution curve in Figure 20b was not successful (Figure 22c). 
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Figure 22. Initial image reconstruction and study of the uneven power distribution 

Alternatively, to mitigate this issue the cost function Equation (7) was revised to account for the 
power distribution bias: 

a* = argmin HaJi + Wa^ + •••+ Hajj. 

subject to   yB-(P^as
D0 )¥a <8 (9) 

where Pbias is the power distribution bias illustrated in Figure 22b. The reconstructed images based on 
Equation (9), with different measurement rates and line groups, are shown in Figure 23. 

The image quality improvement using the bias compensated measurement matrix can be clearly 
observed by comparing Figure 22 and Figure 23. Albeit there was still an image quality difference 
between the left and right sides of the imagery. This could be regarded as a "self-repair" exercise in 
case of hardware deficiency/failure, a demonstration of the highly adaptive nature of the proposed 
compressive line sensing technique. Here again, the benefit of exploiting joint sparsity was evident as 
well (compare Figure 23c and Figure 23f). 

(a) 256 measurements 
Group =2 

(d) 32 measurements 
Group =15 

(b) 128 measurements 
Group =3  

(e) 16measji"ements 
Group =23 

(c) 64 measurements 
Group =7  

(t) 64 measurements 
 A b group  

■ i ■'. 

Figure 23. Image reconstruction using bias-compensated measurement matrices with different measurement rates and line grouping 
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5 CONCLUSIONS 

Through the hard work of all the investigators participated in the research and with the guidance 
of the ONR program officers, the main objective of the project has been achieved. Extensive 
simulations and experimental studies were conducted through the course of this project. The research 
resulted in the publications of two peer-reviewed journal papers; multiple conference publications and 
one US patent filing. Through these activities, the basic framework of the Compressive Sensing based 
Electro-optical underwater active imaging system has been established. The most important outcome 
of this project is the Compressive Line Sensing concept. While the initial motivation is to target the 
underwater electro-optical system design, the paradigm of "sensing each line independently and 
reconstruct a group of lines jointly" is applicabls in other mode of active imaging systems (i.e. 
microwave, millimeter wave imaging systems) or in different environments (i.e. airborne or space 
based sensing) as well. The multi-scaled measurement matrix design is especially attractive for 
microwave or millimeter wave imaging system. The sparse beams in the sensing patterns generated 
using this scheme can significantly reduce the cost and complexity of the antenna design in such 
imaging systems. 

Another interesting discovery during the course of the study is the highly adaptive nature of the 
proposed active compressive sensing systems, both the frame based system and the Compressive Line 
Sensing system. Albeit in both cases, this feature was used to mitigate image quality, it is conceivable 
that more interesting applications can be derived as well, such as re-tasking the sensor to tracking 
different target priority on the fly. In this regard, the system shares some similarity with the feature 
specific imaging [7]. 

The gain from the lower sampling rate (i.e., lower speed/narrower bandwidth electronics, more 
compact and reliable system design, etc.) is common to many other CS applications. However, the 
proposed frame-based CS imager and the Comprsssive Line Sensing imaging system offer some 
additional features. While a CW laser is used in this initial effort to simplify the investigation, the 
compressive line sensing imaging system is compatible with a pulsed laser. In such a setting, resource 
compression translates into lower laser repetition rate, thereby reducing energy consumption and 
system cost and also improving the system reliability, critical for future long duration AUV/UAV 
deployments under stringent power constraints. 

Going forward, significant work is required to optimize the Compressive Line Sensing system 
design. It is important to develop a more accurate joint sparsity model to better exploit the inter-line 
redundancy. It would also be of value to further increase the DMD refresh rates for such special 
patterns and to investigate other SLM devices such as the Grating Light Valve (GLV) [16], which is 
capable of faster refresh rates than the DMD. The impact of motion needs to be characterized. The 
noise characteristics and the impact from other environmental conditions, such as the ambient light, 
etc., need to be incorporated into the simulation. The current prototype system needs to be improved 
and enable a thorough experimental study of this concept through different turbidities. 
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- Phase II." was also being conducted with ONR grants during the study of the frame based 
Compressive Sensing concept. 

■ Another related project "Airborne Compressive Sensing Topographic Lidar" is being conducted 
under AFRL grant # FA9550-13-1-0107. 
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